Chemical Synthesis Of Bromazepam
Administration of bromazepam as a slow–release formulation to 24 healthy subjects after an overnight fast resulted in peak plasma concentrations of 9.09 to 13.00 μg/L (mean 11.05 μg/L) attained in 4 to 16 h (mean 8 h); the corresponding values for a conventional–release preparation administered as 2 separate 1.5 mg doses, 12 h apart, were 8.91 to 11.50 μg/L (mean 10.21 μg/L) in 2 to 8 h (mean 8 h). [F. E. Lerner et al.,Arzneimittelforschung,2001, 51, 955–958.]
A 42–year–old woman ingested 420 mg bromazepam in a suicide attempt and survived despite being found unconscious outdoors in a state of semi–undress and suffering from hypothermia. About 12 h after the ingestion the blood concentration of bromazepam was 7.7 mg/L. [K. Michaud et al.,Forensic Sci. Int.,2001, 124, 112–114.]
BromazepamUse: tranquilizer
Bromazepam CN: 7- bromo- 1 ,3- di hydro- 5- (2- pyridinyl)- 2 H- 1 ,4- benzo diazepine- 2- one
Bromazepam MW: 316.16 MF: C14H10BrN3O
Bromazepam LD50: 879 mg/kg (M, p.o.);1950 mg/kg (R, p.o.)
Bromazepam Reference(s):a US 3 100 770 (Roche; 13.8.1963; appl. 11.8.1961).
Bromazepam Reference(s):a US 3 100 770 (Roche; 13.8.1963; appl. 11.8.1961).
US 3 182 065 (Roche; 4.5.1965; appl. 9.4.1964; prior. 19.4.1963).
US 3 182 066 (Roche; 4.5.1965; appl. 9.4.1964; prior. 19.4.1963).
US 3 182 067 (Roche; 4.5.1965; appl. 9.4.1964).
Fryer, R.I. et al.: J. Pharm. Sci. (JPMSAE) 53, 264 (1964).
modified methods:
DAS 2 233 483 (Roche; appl. 7.7.1972; GB-prior. 8.7.1971, 7.10.1971).
DOS 2 252 378 (Roche; appl. 25.10.1972; CH-prior. 18.11.1971).
alternative synthesis of 2-(2-amino-5-bromobenzoyl)pyridine:
DAS 2 256 614 (Roche; appl. 17.11.1972).
b DAS 1 813 241 (Roche; appl. 6.12.1968; J-prior. 8.12.1967, 9.12.1967, 12.12.1967,
25.4.1968).
combination with sulpiride:
DAS 2 342 214 (Roche; appl. 21.8.1973; CH-prior. 21.9.1972).
A white or yellowish crystalline powder. M.p. 237° to 238.5° with decomposition.
Practically insoluble in water, sparingly soluble in alcohol and in dichloromethane.
Practically insoluble in water, sparingly soluble in alcohol and in dichloromethane.
Bromazepam Dissociation Constant.
pKa2.9, 11.0.
Partition Coefficient.
Log P(octanol/water), 2.05.
Colour Test.
Formaldehyde–Sulfuric Acid—yellow.
Bromazepam Thin–layer Chromatography.
System TA—Rf 61; system TB—Rf 6; system TC—Rf 41; system TD—Rf 13; system TE—Rf 63; system TF—Rf 18; system TL—Rf 53; system TAD—Rf 47; system TAE—Rf 73; system TAF—Rf 69; system TAJ—Rf 34; system TAK—Rf 04; system TAL—Rf 63.
Bromazepam Gas Chromatography.
System GA—bromazepam RI 2665, M (3-OH-) RI 2470; system GB—bromazepam RI 2760, bromazepam-TMS RI 2702; M (3-OH-)-TMS2 RI 2650; system GG—RI 3280.
Column: DB-17 (30 m × 0.32 mm i.d., 0.25 μm film thickness). Column temperature: 150°, held for 1 min, ramp to 230°, held for 5 min, ramp to 300° held for 9 min at 10°/min. Injector and detector temperatures: 270° and 300°, respectively. Carrier gas: helium (pre–column pressure, 80 kPa). Detection: ECD. Retention time: 18.0 min. [F. Guan et al.,J. Anal. Toxicol.,1999, 23, 54–61.]
Column: HP5-MS (5% phenyl:95% siloxane, 30 m × 0.25 mm, 0.25 μm film thickness). Column temperature: 60° held for 1 min, ramp to 295° at 30°/min, held for 6 min. Injector temperature: 250°. Carrier gas: helium, flow rate 1 mL/min. MS detection (NCI mode). Retention time: 9.7 min. [P. Kintz et al.,J. Chromatogr. B Biomed. Sci. Appl.,1997, 700, 119–129.]
Bromazepam High Performance Liquid Chromatography.
System HI—k 2.32; system HK—k 2.99; system HX—RI 397; system HY—RI 331; system HZ—retention time 3.0 min; system HAA—retention time 14.7 min; system HAF—retention time 6.6 min (tailing peak); system HAX—retention time 5.8 min; system HAY—retention time 5.1 min; system HBH—k 1.63; system HBI—k 0.80; system HAL—retention time 8.1 min; system HAM—not detected.
Column: RP C18 (150 × 3.9 mm i.d., 5 μm). Mobile phase: water:acetonitrile:triethylamine (700:300:4), adjusted to pH 7.4 with phosphoric acid, flow rate 2 mL/min. UV detection (λ = 240 nm). Retention time: bromazepam, 2.1 min, α-hydroxytriazolam (IS), 3.2 min. [Le Solleu et al.,J. Pharm. Biomed. Anal.,1993, 11, 771–775.]
Bromazepam Ultraviolet Spectrum.
Aqueous acid—239, 345 nm; aqueous alkali—237 nm (A11=920b), 348 nm; methanol—233 nm (A11=1050b), 320 nm (A11=61b).
Bromazepam Infra–red Spectrum.
Principal peaks at wavenumbers 1685, 825, 750, 802, 1315, 1230 cm−1.
Bromazepam Mass Spectrum.
Principal ions at m/z 236, 317, 315, 288, 316, 286, 208, 78; 3–hydroxybromazepam 79, 78, 52, 105, 304, 314, 316, 51.
Quantification.
Gas chromatography.
In plasma: limit of detection 5 μg/L, ECD—U. Klotz,J. Chromatogr.,1981, 222(21) B Biomed. Appl., 501–506. In plasma or blood: bromazepam and other benzodiazepines, ECD and NPD—P. Lillsunde and T. Seppala,J. Chromatogr.,1990, 533, 97–110. In hair: limit of detection, 20 pg/mg hair, MS (NCI mode)—P. Kintz et al.,J. Chromatogr. B Biomed. Sci. Appl.,1997, 700, 119–129. In urine: bromazepam and other benzodiazepines, limit of detection for bromazepam 160 μg/L, ECD—F. Guan et al.,J. Anal. Toxicol.,1999, 23, 54–61.
Bromazepam Gas chromatography–mass spectrometry.
In tissue: limit of quantification, 50 ng/g tissue, SIM—X.X. Zhang et al.,J. Chromatogr.,1996, 677 B Biomed. Appl., 111–116. In urine: bromazepam, diazepam, and nordazepam, TOF–MS, comparison with MS and ECD—B. Aebi et al.,Forensic Sci. Int.,2002, 128, 84–89.
Bromazepam High performance liquid chromatography.
In plasma: limit of detection 5 μg/L, UV detection—H. Hirayama et al.,J. Chromatogr.,1983, 277(28) B Biomed. Appl., 414–418. In plasma: limit of detection 3 μg/L, UV detection—A. Boukhabza et al.,Analyst,1989, 114, 639–641. In plasma: limit of detection, 50 μg/L, UV detection—H. Le Solleu et al.,J. Pharm. Biomed. Anal.,1993, 11, 771–775. In serum: bromazepam and other benzodiazepines, UV detection—E. Tanaka et al.,J. Chromatogr.,1996, 682 B Biomed Appl., 173–178 and E. Tanaka et al.,J. Chromatogr. B Biomed. Sci. Appl.,1998, 709, 324.
Bromazepam Disposition in the Body.
Well absorbed after oral administration and peak plasma concentrations are usually achieved within 2 h. About 70% of a dose is excreted in the urine in 72 h, including about 2% of the dose as unchanged bromazepam, about 27% as the glucuronide of 3–hydroxybromazepam, about 40% as the glucuronide of 2–amino–5–bromo–3–hydroxybenzoylpyridine, and less than 1% as 2-(2–amino–5–bromobenz–oyl)-pyridine.
Bromazepam Therapeutic concentration
After a single oral dose of 12 mg, administered to 10 subjects, peak plasma concentrations of 0.11 to 0.17 mg/L (mean 0.13) were attained in 1 to 4 h. Steady–state concentrations of 0.08 to 0.15 mg/L (mean 0.12) were measured during dosing of 6 subjects with 9 mg daily. [S. A. Kaplan et al.,J. Pharmacokinet. Biopharm.,1976, 4, 1–16.]Administration of bromazepam as a slow–release formulation to 24 healthy subjects after an overnight fast resulted in peak plasma concentrations of 9.09 to 13.00 μg/L (mean 11.05 μg/L) attained in 4 to 16 h (mean 8 h); the corresponding values for a conventional–release preparation administered as 2 separate 1.5 mg doses, 12 h apart, were 8.91 to 11.50 μg/L (mean 10.21 μg/L) in 2 to 8 h (mean 8 h). [F. E. Lerner et al.,Arzneimittelforschung,2001, 51, 955–958.]
Toxicity
In a 68–year–old woman who was found unconscious and barely breathing, bromazepam intoxication was discovered to be the cause (a serum level of 6 mg/L was detected); normal functions were restored 12 days after the ingestion. [J. Rudolf et al.,Dtsch. Med. Wochenschr.,1998, 123, 832–834.]A 42–year–old woman ingested 420 mg bromazepam in a suicide attempt and survived despite being found unconscious outdoors in a state of semi–undress and suffering from hypothermia. About 12 h after the ingestion the blood concentration of bromazepam was 7.7 mg/L. [K. Michaud et al.,Forensic Sci. Int.,2001, 124, 112–114.]
Bromazepam Half–life.
Plasma half–life, 8 to 19 h (mean 12).
Bromazepam Volume of distribution.
About 0.9 L/kg.
Bromazepam Protein binding.
In plasma, 70%.
Bromazepam Dose.
Usually 3 to 18 mg daily; up to a maximum of 60 mg daily in divided doses has been given to hospitalised patients.
tags-synthesis of drugs,method of preparation of Bromazepam,molecular weight Bromazepam, molecular formula of Bromazepam,structure of Bromazepam,A1%1 cm Bromazepam
No comments:
Post a Comment